Search results for "Punching shear"
showing 3 items of 3 documents
Simplified model for compressive response of RC column footing with square cross-section
2017
Abstract In this paper, a simplified calculus model for the prediction of the compressive response of RC column footing with a square cross-section is presented. As it is well-known RC concrete footing are designed adopting uniform contact pressures on the substrate and assuming a strut and tie model in deep members and a cantilever beam or slab model in flexible members. Deep and flexible members are distinguished in literature only based on the tangent of the angle expressed as the ratio between the depth and the shear span of the footing. In this paper, several subgrade contact pressures distribution for column footings (rigid or soft soils) were considered in developing a mechanical mod…
Practical Model for Load-Carrying Capacity of Eccentrically Loaded Square Column Footings
2018
In this paper, a practical calculus model based on the strut-and-tie approach for prediction of the load-carrying capacity of eccentrically loaded RC column footings with square cross sections is presented. Existing models based on beam or slab models with flexural and two-way slab punching shear failure are presented and discussed. Several subgrade contact pressure distributions for column footings are considered. A parametric analysis of the effects of footing and column dimensions (depth, width), longitudinal ratio of longitudinal steel, and strength of concrete and steel is made for all models examined. Available experimental data are utilized to verify the model in comparison with exis…
Practical Calculation Models for Column Footing and Comparison with Experimental Data
2017
In this paper, a simplified calculation model for the prediction of the load-carrying capacity of an RC column footing with a square cross section is presented. A detailed background of available experimental data and existing models for the prediction of the load-carrying capacity of slender and deep footings is presented. Cases of flexural failure and punching shear failures for slender footing and concrete strut crushing and tie yielding in deep members are analyzed. The aim of the paper is to propose a simple design formula for slender and deep footing verified by available experimental data and in agreement with other existing expressions. Expressions of the maximum mechanical ratio of…